Modeling Cyber Resilience for Energy Delivery Systems Using Critical System Functionality

Md Ariful Haque


Citation

Haque, M. A., Sachin Shetty, and Bheshaj Krishnappa, "Modeling Cyber Resilience for Energy Delivery Systems Using Critical System Functionality", IEEE Resilience Week 2019, San Antonio, TX, USA

Abstract

In this paper, we analyze the cyber resilience for the energy delivery systems (EDS) using critical system functionality (CSF). Some research works focus on identification of critical cyber components and services to address the resiliency for the EDS. Analysis based on the devices and services excluding the system behavior during an adverse event would provide partial analysis of cyber resilience. To address the gap, in this work, we utilize the vulnerability graph representation of EDS to compute the system functionality under adverse condition.We use network criticality metric to determine CSF. We estimate the criticality metric using graph Laplacian matrix and network performance after removinglinks (i.e., disabling control functions,or services). We model the resilience of the EDS using CSF, and system recovery curve. We also provide a comprehensive analysis of cyber resilience by determining the critical devices using TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) and AHP(Analytical Hierarchy Process) methods.We present use cases of EDS illustrating the way control functions and services in EDS map to the vulnerability graph model. The simulation results show that we can estimate the resilience metric using different types of graphs that may assist in making an informed decision about EDS resilience.

Related Videos

Related Research Themes

Related Research Activities

Related Technologies

Related Impact Areas

CREDC Authors

Copyright Notice

This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.

  1. The following copyright notice applies to all of the above items that appear in IEEE publications: "Personal use of this material is permitted. However, permission to reprint/publish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from IEEE."

  2. The following copyright notice applies to all of the above items that appear in ACM publications: " ACM, effective the year of publication shown in the bibliographic information. This file is the authors version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version was published in the journal or proceedings indicated in the bibliographic data for each item."

  3. The following copyright notice applies to all of the above items that appear in IFAC publications: "Document is being reproduced under permission of the Copyright Holder. Use or reproduction of the Document is for informational or personal use only."