Online, Context-aware, Intelligent Anomaly Detection, Causality and Consequence Analysis, and Response Suggestion for SCADA Systems

Wenyu Ren, **Tim Yardley**, Klara Nahrstedt

University of Illinois Urbana-Champaign, Urbana, Illinois, USA
Motivation

• SCADA (Supervisory Control and Data Acquisition)
 • Widely used in EDS to gather measurement data from field devices and send control commands to them
 • Vulnerable to various cyberattacks
 • Heterogenous resource-constrained end devices
 • legacy control protocols
Motivation

• Gap
 • Most of existing solutions only focus on monitoring and event detection of network state at the transport layer and perform flow-level analysis
 • Even solutions which parse the application protocol can usually detect the event only but fail to provide any causes and consequences of the event.
Our Approach

• Objective
 An online, context-aware, intelligent framework for anomaly detection, anomalous event analysis, causal reasoning, consequence indication and response suggestion for SCADA networks

• Feature
 • Utilizes not only transport-layer statistics but also application-layer statistics
 • Analyzes potential causes and consequences
 • Provides valuable response and recovery plan
Framework Architecture

Network Traffic → Parsed Data → Anomaly Detector

- Flow-level Module
- Control-protocol-level Module
- Content-level Module

Anomalies → Causality-based Analyzer

Domain knowledge and cyber-physical model → Causes, Consequences and Suggested Responses