An End-to-End Infrastructure for Cyber-Physical Intrusion Detection

REINHARD GENTZ, MAHDI JAMEI, ANNA SCAGLIONE

ARIZONA STATE UNIVERSITY, USA
What is Cyber Physical Intrusion Detection

CPS – Cyber Physical System

In a system Cyber & Physical environment is connected

-> Attacks affect both environments

-> We should sense both environments for best attack detection

CPS-IDS goes **beyond** the traditional monitoring solutions adopted in EDS-operations.

It requires new elements:

- High resolution physical-sensing (PMUs)
- Combined network traffic collection & filtering

Challenge: Big Data Problem
Hierarchical Architecture

We propose hierarchical architecture:

- Reduced CPS-IDS network load
- More resilient to network failure – Outages; Attacks
- Distribute computational load – Scalability
- Prioritize important messages (Attacks!) over status messages

Do as much of the processing locally and only ship what is necessary
Stage I (Local Processor)

- Gather Local Data:
- Analyze it & based on the result
 - PMUs produce large quantities of precise data
 - Prioritize the message
 - Reduce the message size
Stage I (Local Processor)

The BBB minicomputer shields the sensor from the outside world.

- The analytics systems are plug-in modules.
- Easy to update and replace.
- Analytics can be done by different programmer (Only API knowledge needed).
- Independence from sensor vendor security updates.

Local Rules e.g.,:
- Validity of $I = Y V$
- Power Quality Limits

Data Analytics

Hi Prio Queue

Local Analytics (BBB)

Low Prio Queue

a uPMU with a BBB attached

Message

Analytics Decide the Queue

Sensor Data
Stage II

- Aggregate Data from multiple sensors
- & Fuse it with static information, (e.g. reference model for subnetwork)
- Decrease false positive and false negatives
- generate actionable alarms with low latency
- Targeted request of input data with a publisher subscriber model

- Stage can be repeated for scaling, wide area deployment
Central Stage/Human Machine Interface

- Archive the data & analytics results
- Frontend to the user

Different databases have different strengths
- Especially for big data

Search for properties? Elasticsearch
Retrieve lots of raw data? Cassandra
Example Analytics - Localizing Fault

Stage 2’s View

- No Alarm
- No Alarm
- Voltage Sag

⇒ Fault localized downstream of uPMU 3

Results found from data analysis. Priority for transmission.
Thank you

Questions?
Stage II Validation

- We see how the measurements are correlated

Sensor 1
2nd floor

Sensor 2
Basement ServerRack
Stage II Validation

Voltage Dip in the whole building
- We see how the measurements are correlated

Min/Max Sensor 1
2nd floor

Min/Max Sensor 2
Basement Server Rack

Question: Is this pattern possible with the specific electrical grid in place? => Further validation