Attack Graph Based Metrics for Identifying Critical Cyber Assets in Electric Grid Infrastructure

Chen Huo
Panini Sai Patapanchala
Dr. Rakesh B. Bobba
Dr. Eduardo Cotilla-Sanchez
Our Goal

• **Short-term**: Developing a method that takes cyber-physical dependency into account and assesses the risk of cyber-attack induced cascading failures.

• **Long-term**: Providing real-time situational awareness of threat to the system by characterizing “how far or close” a given grid system is to a cyber-induced cascading failure, and how to mitigate it.
Research Overview

- Firewall
- Nmap Data

NP-View

Attack Graph

- PowerWorld (online)
- Cosmic (offline)

Risk Analysis

- Risk Metrics
- Graph Pruning (ADMST)
Data Needed

• Physical Model
 – Bus-Branch -> Node-Breaker
 – Protection Schemes

• Cyber Model
 – Network Topology
 – Access/Firewall Rules
Previous Work

• Cosmic-based Cyber Physical Models for IEEE 9-bus and 39-bus cases.

• Risk Metrics for:
 – Target Nodes (Ex: Relays)
 – Intermediate Nodes (Ex: HMIs)
 – Source Nodes (Ex: Attack Origins/Jump Hosts)
 – Total Security Exposure
Current Focus

• Risk Metrics for Cascading Outages
 – Compare configurations with respect to cyber risk for cascading outages
Single-bus-single-breaker Configuration

Bus-branch model

Node-breaker model

Bus

Bus

nc

52

nc

52

cc1

cc2
Ring-bus Configuration

Bus-branch model

Node-breaker model
Breaker-and-a-half Configuration

Bus-branch model

Node-breaker model
Double-bus-double-breaker Configuration

Bus-branch model

Node-breaker model
Example: IEEE Case 9
Example: IEEE Case 9
Types of Protection

• Overcurrent & directional overcurrent
• Under-voltage load shedding
• Under-frequency load shedding
• Distance
 • Differential
 • Phase balance
Protection Scheme Templates

- Directional
- Phase balance

- Differential
- (Under-voltage load shedding)
- (Under-frequency load shedding)

- Directional
- Distance
Cyber Topology

• Synthetic but realistic network topology and access rules
• Synthetic but realistic vulnerability distributions
RTS-96 N-x Simulation Procedure

- **N-1 simulations:**
 - Secure for 93 out of 120 branch failures (with baseline RTS-96 data).

- **N-1-1 simulations:**
 - There are 7,140 combinations for 120 choose 2, and therefore, 14,280 permutations.
 - From 14,280 cases choose both first and second failure belong to those 93 secure branches.
 - 798 out of 14,280 N-1-1 simulations with two N-1 secure branches failures cause a certain physical impact.
N-1-1 Results

N-1-1 simulation (30s) results for RTS-96

load shedding amount (MW)

second failure branch ID (b)

first failure branch ID (a)
N-1-1 Results

<table>
<thead>
<tr>
<th>First Failure</th>
<th>Second Failure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Branch ID/From-To</td>
<td>Count for Times</td>
</tr>
<tr>
<td>100/312-323</td>
<td>58</td>
</tr>
<tr>
<td>22/112-123</td>
<td>38</td>
</tr>
<tr>
<td>56/209-212</td>
<td>36</td>
</tr>
<tr>
<td>11/107-108</td>
<td>30</td>
</tr>
<tr>
<td>101/313-323</td>
<td>30</td>
</tr>
</tbody>
</table>
Currently, we are working on...

- Fixing Cyber topology data format for RTS-96
- Top k actions to improve network’s security posture for cascading outages
- Cyber topology for Poland model (2000+ buses)
Thank You! & Questions?