Black Sky Resilience: Cyber

Jonathon Monken
Senior Director, System Resiliency
PJM Interconnection
Cyber and physical security practices protect information, systems, facilities and the people within the PJM footprint

- PJM entrusted with critical member and market data
- Connected to nearly 1,000 members and 13 states + D.C.

From reliability and efficiency to system resilience
Lynchpins

5,600 substations
2.5-5% critical

Operation of the Energy Management System

Requires visibility and connectivity

Generation is rarely affected

Single-feed transmission vulnerability

Operation of the Energy Management System

5,600 substations
2.5-5% critical

Requires visibility and connectivity

Generation is rarely affected

Single-feed transmission vulnerability
What is Black Sky Hazard?
Threats

- Nation state threats
- Un-attributable threat actors
- Insider threats
- Additional man-made or natural events
Pacific Gas and Electric’s Metcalf Substation

<table>
<thead>
<tr>
<th>When</th>
<th>April 2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>Where</td>
<td>San Jose, Calif.</td>
</tr>
<tr>
<td>Attribution</td>
<td>Criminal individuals</td>
</tr>
<tr>
<td>Methods</td>
<td>Coordinated physical attack</td>
</tr>
<tr>
<td>Impacts</td>
<td>$15 million in substation repairs</td>
</tr>
</tbody>
</table>
Superstorm Sandy: A Tale of Extremes

- **When**: October 2012
- **Where**: Coast to Appalachians
- **Impacts**:
 - Damage from floods, winds and snow
 - $63 billion in economic impact
 - 4.8 million people affected
Powerful Solar Storm Causes Blackout in Quebec

<table>
<thead>
<tr>
<th>When</th>
<th>March 1989</th>
</tr>
</thead>
<tbody>
<tr>
<td>Where</td>
<td>Quebec, some U.S. impacts</td>
</tr>
<tr>
<td>Impacts</td>
<td>Blackout throughout Quebec</td>
</tr>
<tr>
<td></td>
<td>About $1 billion economic impact</td>
</tr>
<tr>
<td></td>
<td>200 power grid problems noted in U.S.</td>
</tr>
</tbody>
</table>
Man-made or Natural Events: 2003 Northeast Blackout

Originating in Ohio, Blackout Affects U.S. Northeast and Parts of Canada
Not a security or natural event, but an operational failure

<table>
<thead>
<tr>
<th>When</th>
<th>August 2003</th>
</tr>
</thead>
<tbody>
<tr>
<td>Where</td>
<td>Northeast U.S. and Canada</td>
</tr>
<tr>
<td>Duration</td>
<td>Up to two days</td>
</tr>
<tr>
<td>Impacts</td>
<td>508 generating facilities offline</td>
</tr>
<tr>
<td></td>
<td>55 million people affected</td>
</tr>
<tr>
<td></td>
<td>Economic cost: $7-$10 billion</td>
</tr>
</tbody>
</table>
First Successful Cyberattack on a Power Grid*

<table>
<thead>
<tr>
<th>When</th>
<th>December 2015</th>
</tr>
</thead>
<tbody>
<tr>
<td>Where</td>
<td>Ukraine</td>
</tr>
<tr>
<td>Attribution</td>
<td>Unknown</td>
</tr>
<tr>
<td>Methods</td>
<td>Denial-of-service attacks, phishing, malware</td>
</tr>
<tr>
<td>Impacts</td>
<td>134 MW load lost</td>
</tr>
<tr>
<td></td>
<td>225,000 people affected</td>
</tr>
</tbody>
</table>

* Details and attribution vary from different sources
Vital Interdependencies
• Relies on just-in-time delivery
• Opposing trends for natural gas vs. coal
• Disproportionate number of natural gas black start plants
• Few plants with ‘firm’ contracts
• Growing number electricity-powered compressors

• Fewer system redundancies, less coordination

• Longer repair times

• Limited storage
- Essential for grid and market operations
- Heavily dependent on commercial systems
- Extensive shared physical infrastructure
Two-way Street

- 24 hours of back-up power
- Few alternative mediums for communication
- ‘Manual’ operation of the grid
From Reliability to Resilience
So what happens if…

Widespread, long duration outage

Natural vs. malicious

The challenges of scale
- Situational Awareness
- Communications
- Prioritization

Critical, low-density engineering assets
Response Coordination

- Government Sources
- Situational Awareness
- Industry Sources
- Commercial Sources
PJM has two systems that are able to control the power grid in the event the EMS systems at both sites (AC1 – Jefferson and AC2 – Milford) fail simultaneously.

The systems are referred to as:

- Golden Image
- Virtual Backup Control Center

Each of these systems has different characteristics to mitigate the effects of different types of failures.
Golden Image Purpose

Intended to mitigate the effects of a *cyberattack* that compromises all other PJM systems

- Is ‘air gapped’ from all other systems (except when in use or being updated)
- Can run the power grid for a long period of time (days)
- Will usually be ‘back level’ and have multiple older images to select from
Mitigates the effects of a **dual failure** that compromises both of PJM’s EMS systems, e.g., a database update gone wrong, hardware failure, cyber intrusion…etc.

- Designed to come up quickly (minutes)
- Today is in production as a backup ACE calculator. (Includes independent data feed for ACE related telemetry)
- Capable of running a full EMS including Advanced Applications
Cyber Mutual Assistance

• Three types available
 – Industry to Industry (ESCC CMA)
 – Private Sector to Industry (Contract)
 – Government to Industry (ICS-CERT)

• Lane de-confliction
• Cross-training and exercise
• Governance challenges
Emerging Opportunities

- “Packaged” threat and vulnerability INTEL sharing
 - Attribution, product, TTPs, malware, etc.
- Joint Intelligence Generation
 - Honeypots, sinkholes
- R&D Support for Tools and Capabilities
 - RADICS, Labs, ESCC
- Intra-sector Information Sharing
- DoD Partnerships
Security and Resilience is Paramount

Why is this all important?

- Electricity is vital to our daily lives
- More than 61 million electricity users depend on PJM

Electricity is vital to our daily lives and more than 61 million electricity users depend on PJM.