Security Gaps Arising Due to Large Infrastructures Coupled with Energy Delivery Sub-systems

Gas and Electric Grid Unit Commitment with Coordinated N-1 Generator Contingency
Eran Schweitzer (ASU), Anna Scaglione (ASU)

GOALS
- Operate both the gas and electric systems optimally, while respecting N-1 generator contingency requirements

FUNDAMENTAL QUESTIONS/CHALLENGES
- Critical infrastructures like the gas and electric systems are coupled.
- How does the operation technology (OT) of one affect the other?
- Could security breaches in one “spill-over” to the other?

GAS GRID MODEL
- The Gas grid is modeled with the following elements:
 - Pipes
 - Suppliers (wells/storage)
 - Loads
 - Compressors

RESULTS: NO COORDINATION VS. COORDINATION
- Solving the gas and electric systems separately (left) pressure violations occur.
 - This has also been shown in other works3
- Violations are avoided with the GECUC (right)

DISPATCH WITH NO COORDINATION
- Gas-Flow on 17-18 (m³,h⁻¹)
- Time (h)

DISPATCH WITH COORDINATION
- Gas-Flow on 17-18 (m³,h⁻¹)
- Time (h)

RESULTS: GENERATOR CONTINGENCY
- MILP formulation enables easy integration with N-1 contingency formulations.
- Compressor ratio is allowed to increase.
 - The fact that it does shows the benefit of considering the coupled problem
 - Certain cases could also cause infeasibility

FUTURE EFFORTS
- Example case demonstrating contingency infeasibility if compressors are not handled correctly.
- Develop ways to decompose the optimization problem.

ACKNOWLEDGEMENTS
We wish to acknowledge Mahdi Jamei and Kory Hedman for their valuable contributions to this work.