GOALS

Overall Goal
• Provide fast authentication using Time-Valid One-Time-Signatures (TV-OTS) for high-rate, low-latency sensor data streams.

Current Goals
• Use receiver’s global knowledge to estimate confidence in the validity of each individual signature.
 – Takes into account known attacks.
 – Uses evidence acquired through signatures to estimate confidence.
• Deploy within GridStat.

BACKGROUND AND FUNDAMENTALS

• Data authentication for Smart Grid applications ideally supports the following features:
 – Low latency. – Low key distribution overhead.
 – Secure multicast. – Message independence.
• Current protocols do not satisfy these requirements.
 – Low-latency signature generation and verification.
 – Flexibility to adjust security and performance.
 – Robust against attacks (dictionary, DoS, dropped packet, replay).

TV-OTS Overview
• Time divided into fixed-length epochs.
• Senders maintain a set of secret hash chains.
• Signatures are created with the HORS signature scheme, using the set of hash chain secrets during each epoch:
 – Messages hashed into multiple short bit strings (indices).
 – Generated indices specify secrets to include in signature.
 – Timestamp also included in signature.
• Signature verification.
 – Packet freshness verified.
 – Indices generated from message to determine expected index of each included secret’s chain.
 – Each secret verified by hashing to recreate publicly known value.
 – Verified for the epoch of the signature timestamp.

Key Exchange
• Key stream sends future public keys independently of current messages.
• Senders compute future public keys while signing with current secrets.
• Key update messages sent much less frequently than payload messages.
 – Allows traditional public key authentication (e.g., RSA) for key updates.

CURRENT RESEARCH

Probabilistic Signature Verification
• TV-OTS security is inherently imperfect.
 – Small probability that each signature may be forged.
 – That probability, hence the system security, is tunable using TV-OTS parameters.
• Receivers can use global knowledge and local evidence to estimate a per-signature confidence.
• Signature verification result is a probability, not a Boolean.

Eavesdrop Threat
• Secrets that receivers successfully verify may be subject to eavesdrop attacks:
 – Attacker learns secrets from legitimate signatures.
 – Attacker substitutes learned secrets into malicious signature.
 – Requires overlap in the secrets exposed and secrets needed.

Blocked Keys Threat
• Our key distribution system runs over unreliable networks.
• Some hash chains may be missing public key values.
• Signatures containing secrets with no chain to verify against cannot contribute to confidence.
• Backfilling idea: if a secret has no corresponding chain, but otherwise the signature confidence is high, that chain may be recreated from the signature secret and used to verify future signatures.

Note: Parameters chosen to visually show threat effects rather than realistic performance.

BROADER IMPACT

• Explores the idea of informed probabilistic security.
• Fast authentication, applicable to a large class of big data applications.

INTERACTION WITH OTHER PROJECTS

• Continuing investigation of TV-OTS, originally a TCIPG project.
• Implemented as part of GridStat.
• Leverages GridStat’s deployment in DETERLab.

FUTURE EFFORTS

• Combine different types of threat evidence into single estimate on signature confidence.
• Build attack code to test accuracy of the confidence estimation system.

References: