EDS OPERATIONAL RESILIENCE

- Countermeasures deployed to mitigate cyber attacks in EDS may reduce the cyber risk at the cost of degrading operator resilience.
- Need to maintain EDS QoS when countermeasure are applied to an operational EDS.

RESEARCH VISION

- Optimal selection of countermeasure which balances the tradeoff between security risk and quality of service.

RESEARCH APPROACH

- SDN-based architecture for autonomous attack containment which dynamically modifies access control rules based on configurable trust levels.
- Playbook which keeps a collection of work flow rules that define an OT organization’s strategy to respond to certain cyber security events.
- Cost model to select the countermeasure which balances the tradeoff between security risk and quality of service.

SYSTEM MODEL

- Alert → Playbook → Optimization → Apply Security Settings
- Message Authentication Code (MAC) and Key length represent cryptographic parameters that determine security risk and QoS settings.
- MAC and Key Length increase Security Level (SL) and impact packet delay and throughput in SCADA communication network.

SOME RESULTS FROM OUR WORK

- Substation automation control and monitoring and alarm/fault processing (operation-critical services) needs strict time constraint (≤ 100 ms) along with desired SL.
- Non-power system equipment monitoring and power quality monitoring, customer metering (Non operation-critical service) demands strict throughput ($\geq 97\%$).

RESEARCH VISION

- Countermeasures deployed to mitigate cyber attacks in EDS may reduce the cyber risk at the cost of degrading operator resilience.
- Need to maintain EDS QoS when countermeasure are applied to an operational EDS.

SYSTEM MODEL

- Alert → Playbook → Optimization → Apply Security Settings
- Message Authentication Code (MAC) and Key length represent cryptographic parameters that determine security risk and QoS settings.
- MAC and Key Length increase Security Level (SL) and impact packet delay and throughput in SCADA communication network.

SOME RESULTS FROM OUR WORK

- Substation automation control and monitoring and alarm/fault processing (operation-critical services) needs strict time constraint (≤ 100 ms) along with desired SL.
- Non-power system equipment monitoring and power quality monitoring, customer metering (Non operation-critical service) demands strict throughput ($\geq 97\%$).

IMPACT ON GRID RESILIENCE

- Business Impact
 - Reduce spread of impact of attacks
 - Ensures security investment by providing countermeasures that balance security risk and quality of service

COLLABORATION OPPORTUNITIES

- Seeking collaborative opportunities from industry partners:
 - Scenarios where SDN can play an effective role in automatically changing the network configuration to limit the impact of cyber attack
 - Identifying required operational quality of service.
 - Identifying parameters for determining operational resilience?