GOALS
- Smart grids are vulnerable to false message injection, fake measurements, and tampering with command and control information.
 - Lack of real-time authentication and integrity is a critical problem.
 - Existing security mechanisms are either not scalable or too slow.
- Develop novel authentication mechanisms for smart grids:
 - Delay-aware: 60–120 messages can be authenticated per second.
 - Scalable to tens of thousands of components.
 - Broadcast authentication, compact signatures.
 - Practical test and deployment on actual smart grid infrastructure.

FUNDAMENTAL QUESTIONS/CHALLENGES
- Critical vulnerabilities for smart grids:
 - False data injection attacks.
 - Tampering commands.
 - Cascade failures.
- Authentication of commands/measurements is vital!
 - Real-time: 60–120 messages per second.
 - Scalable: Broadcast authentication for large number of components.
- Existing authentication methods are NOT enough.
 - Extremely slow: Traditional signatures.
 - Unscalable: Symmetric crypto.

RESEARCH PLAN
- Design novel delay-aware and scalable digital signatures.
 - Thrust I – Phase 1:
 - Design signer-optimal schemes with trapdoor permutations.
 - Structure-free Compact Authentication with RSA: SCRA-RSA.
 - Achieve minimum end-to-end delay.
 - Thrust I – Phase 2:
 - Test SCRA-RSA on embedded devices to assess its performance.
 - Conduct experiments on actual smart grid testbeds.
 - Thrust II – Phase 1:
 - Design SCRA-BGLS based on crypto pairing.
 - Design ECDLP-based message recovery (ECDLP-MR) scheme.
 - Achieve minimum signature size.
 - Produce formal proofs for given constructions.
 - Thrust II – Phase 2:
 - Test SCRA-BGLS and ECDLP-MR on embedded devices.
 - Conduct experiments on actual smart grid testbeds.
 - Thrust III:
 - Create an open-source crypto framework.
 - Framework tested on actual smart grid testbed.
 - Release educational course modules (e.g., portable VMs)

RESEARCH RESULTS
- Observation: Signature aggregation is more efficient than signing.
 - Offline: Precompute signature components on hash output domain.
 - Divide & conquer strategy on hash output.
 - Online: Given the hash of the message, fetch and combine precomputed signatures via signature aggregation function.

FUTURE EFFORTS
- Develop formal proof for SCRA-RSA.
- Implement prototype of SCRA-RSA.
- Proceed with Thrust I – Phase 2.