BLOCKCHAIN TECHNOLOGY

Annabelle Lee
Chief Cyber Security Specialist
11/28/17
Overview...

- Blockchain is a distributed ledger technology
 - Explicitly distributes control among all peers in the transaction chain
 - Contrast with centrally controlled ledger
- Blockchain networks are *trustless*
 - Assume compromise of the network by both insiders and outsiders.
- Considered *transparent* because
 - Miners confirm and verify each transaction
 - Every participant in the peer-to-peer network
 - Has a copy of the ledger and
 - Can see the contents of every transaction
 - Once recorded, transactions cannot be altered
 - Ensures data integrity
 - Addition of transactions by consensus
Inclusion of digital signature and hashing
- Each block contains a cryptographic hash (typically SHA256)
 - Computed based on all the blocks in the chain, to that point
- Each transaction is digitally signed by the originator
 - Considered “anonymous” -- no personally identifiable information
 - Associated public key distributed

Permissioned vs permissionless blockchain
- Permissioned (private): entity identity must be verified
- Permissionless (public): anyone can participate

Potential use cases
- Currently, most closely associated with enabling cryptocurrencies such as Bitcoin and Ethereum
- Transactive energy to support DER
- eMobility – transact energy charging at stations in multiple service territories
- Customer contracts – removing the middleman from the retail energy market
Implementation Issues

- **Scalability**
 - Significant storage required
 - Technology meeting processing needs

- **Potential attacks**
 - Denial of service (DoS)
 - Widespread distribution of malware
 - Timestamp alteration

- **Key management infrastructure**
 - Key generation, storage, distribution, etc.
Supply Chain Security

- Commercially available Information and Communications Technology (ICT) solutions present significant benefits
 - Low cost
 - Interoperability
 - Meet the needs of a global base of customers
 - Choice among competing vendors
 - Increase the risk of a threat event which can impact the ICT supply chain
 - May include insertion of malicious software, firmware, and/or hardware

Cyber security supply chain issues are of growing concern
Cyber Security Supply Chain

- Blockchain application
 - Potential use case
 - Ensure the integrity of the supply chain
 - *Detect* unauthorized changes to firmware and software
 - Can be applied throughout the supply chain
 - Chips to components to devices
 - What is the provenance?
Blockchain Working Group

- Representatives from the US, the European Commission (EC), and Agency for the Cooperation of European Regulators (ACER)
- Focusing on OT supply chain for the energy sector
- Applicable NESCOR\(^1\) failure scenarios
 - DER.5 Trojan Horse Attack Captures Confidential DER Generation Information
 - Vulnerability: System permits installation of malware in the supply chain for the DER system
 - DER.13 Custom Malware Gives Threat Agent Control of FDEMS\(^2\)
 - Vulnerabilities
 - Physical access may be obtained by unauthorized individuals to embedded equipment in the supply chain, installation organization or maintenance organization,
 - System relies on credentials that are easy to obtain for access to install software on the FDEMS platform

\(^1\)National Electric Sector Cybersecurity Organization Resource
\(^2\)FDEMS: Field Distributed Energy Resources Energy Management System
Applicable NESCOR Failure Scenarios

- DGM.8 Supply Chain Vulnerabilities Used to Compromise DGM Equipment
 - Vulnerability: System permits unauthorized changes to software/firmware at suppliers of equipment, maintenance, and transportation

- Generic.4 Supply Chain Attacks Weaken Trust in Equipment
 - Vulnerability: System permits unauthorized changes in the supply chain.
Discussion

Annabelle Lee
ablee@nevermoresecurity.com
www.NevermoreSecurity.com
240.204.3258