Summary of Breakout Sessions and Wrap-up Discussion

CREDC Industry Workshop
March 27-29, 2017
Breakout Topics

Cyber Supply Chain Provenance and Protection – Dennis Gammel, SEL
Engineering Secure EDS – Zach Tudor, Idaho National Lab
PKI in Current and Emerging EDS – Sean Smith, Dartmouth College
Supply Chain Security

CREDC Industry Workshop
March 27-29, 2017
Product Development Life Cycle Stages

- Research
- Develop
- Manufacture
- Integrate
- Service
- Monitor

- Personnel
- Complexity & Cost
- Crossover Technology
Supply Chain Risks to Consider

- Environmental
- Economic
- Poor Communication
- Unreliable Delivery
- Inconsistency
- Labor Disputes
- Political Instability
- Obsolescence

- Interdiction
- Counterfeit
- Cover Functionality
Assessing Supply Chain

- Evaluate Suppliers
 - Reputation
 - Documented Features
 - Development Process

- Assess Products
 - Product Tracking
 - Certifications

- Assess Chain of Custody
 - Supply Chain Length
 - Personnel Trust
 - Delivery Time
 - Packaging
Areas of Research

• Supplier Assurance Matrix
 • Certifications
 • Reputation
 • Process
 • Stability
 • Disclosure Process

• Diversity Versus Standardization

• Tools for the Product Life Cycle Stages including Delivery Tracking
 • Blockchain
 • Product Diagnostics
Discussion
Breakout Topics

Cyber Supply Chain Provenance and Protection – Dennis Gammel, SEL
Engineering Secure EDS – Zach Tudor, Idaho National Lab
PKI in Current and Emerging EDS – Sean Smith, Dartmouth College
Engineering Secure EDS

Zach Tudor, INL
Tim Yardley, Illinois

CREDC Industry Workshop
March 27-29, 2017
Session Summary

• Great attendance and participation

• Passionate discussions, not always involving new engineering methods

• Identifying transformational technologies or methodologies
 • (Zach comment) Does any inventor foresee the transformational nature of their invention?

• Industry needs a motivating event
Path to Session Outcomes

- Overall Themes
 - Investigate **fragility** to help re-enforce resiliency
 - Make **enabling tenets** rather than restricting requirements
 - Must consider **all-hazards** approaches
 - Some **current initiatives** are moving the ball forward
 - **Secure (resilient) systems need to evolve resiliently**

- Develop tenets
 - Ten Commandments of resilient engineering

- R&D Questions
Key Comments

• Features or convenience go against security

• Railway priorities (don’t kill anyone, keep trains running, efficiency – stay in business)
 • Efficiency goes counter to reliability and security, so how do you find a happy middle ground

• Cyber security is not an end point, it’s something that we operate in
 • It’s impossible to take every risk off the table
 • Need good recovery mechanisms

• Moving from physical to cyber is difficult to grasp. Physical world is a bit easier to understand as the inject vector is physical proximity, not varied like cyber is

• Third party connections are essential, and they often cannot be decoupled/cut off for various reasons (support, warranty, etc)
More Key Comments

- Managing vendors is increasingly difficult and giving them secure the connectivity to the system
 - There’s too much stuff out there (Zach)
- Consider the protection of the system from the operators of the system itself
- Having a methodology that allows me to evaluate a secure system in relation to its deployment in a particular domain
- Missions can conflict
- Designing a system is a separate discipline from deploying it, maybe there needs to be two approaches (and they would need to be complementary)
- Power people use power tools for planning/operations, but there aren't any “design tools” that assist you in designing the systems based on particular constraints
Major Take-Aways

• Tenets
 • Control actions should be verified based on system state before acting
 • Safety engineering constraints must be adhered to in order to have a secure EDS
 • Isolate/segment trusted and untrusted components from each other
 • The system should not be allowed to take an action that harms itself
 • You must be able to trust the sensors
 • Design systems so that unacceptable consequences are physically impossible

• Lack of appreciation for attack techniques
 • People focused on malware or known vulnerabilities rather than on the full range of techniques available to accomplish the end goal

• Tactical vs strategic thinking causes more problems down the road
Discussion
Breakout Topics

Cyber Supply Chain Provenance and Protection – Dennis Gammel, SEL

Engineering Secure EDS – Zach Tudor, Idaho National Lab

PKI in Current and Emerging EDS – Sean Smith, Dartmouth College
Breakout Session Summary:

PKI in Current and Emerging EDS

Sean Smith, Dartmouth College
www.cs.dartmouth.edu/~sws/

Scribe: Prashant Anantharaman, Dartmouth College

CREDC Industry Workshop
March 29, 2017
Setting the stage

• **Goals**
 • Authentication/authorization of commands (and data?)
 • sent on channels that an adversary can manipulate
 • and where manipulation has big EDS consequences
 • Potentially: non-repudiation
 • Not likely: confidentiality

• **Cryptographic tools**
 • public-key signatures seem the “obvious” solution, but
 • symmetric might work in many scenarios
 • (and in some settings, even quantum)

• **Using these tools requires things have keys and know about the others**
• “**EDS PKI**: the enabling glue”
X.509 and all that

- Trust roots
- Trust paths
- Certificates
- Revocation
- Key replacement
- The dances...

1. "I trust this CA to say truthful things about keypairs..."
2. "...and it says that Bob's CA will speak truthfully about Bob's namespace..."

Certificate C_B

belongs to Bob...

4. "...so I will believe that actions taken by were done by Bob"

(Smith and Marchesini, *The Craft of System Security*)
X.509 and all that

- Trust roots
- Trust paths
- Certificates
- Revocation
- Key replacement
- The dances...

Overheads
- **Starts to get messy**
 - when trust structure goes beyond hub-and-spoke
 - when we need more than basic identity

(Smith and Marchesini, *The Craft of System Security*)
Initial questions

• **Operation and administration**

• **Non-trivial trust paths:** Will “one CA issues certs for everyone” always work?
 • Entities shared between different organizations
 • Mobile electric cars

• **Non-trivial “identity”:** Will one identity cert tell the relying party all they need to know?
 • “I am a device of type X, but at substation Y”
 • “I have software S patched to level N”

• **Non-trivial communication patterns:** Will it always be fairly static hub-and-spoke?
 • Many-to-many
 • Things talking to things they’ve seldom talked to before.
 • Asymmetry of devices?

• **“PKI” in constrained devices**
 • Insufficient entropy to generate unique keys
 • Insufficient computational power for modular math
 • Gear that lives much longer than the crypto?

• **“PKI” in constrained environments**
 • Insufficient bandwidth for standard revocation/path discovery/etc
 • Lack of time synchronization
 • Latency requirements
Initial questions

• **Operation and administration**

• **Non-trivial trust paths:** Will “one CA issues certs for everyone” always work?
 • Entities shared between different organizations
 • Mobile entities

• **Non-trivial “I am a device of type X, but at substation Y”**

• **Non-trivial communication patterns:** Will it always be fairly static hub-and-spoke?
 • Many-to-many
 • Things talking to things they’ve seldom talked to before.
 • Asymmetry of devices?

• **Does it get much beyond one hub-spoke?**
 • “administrative domains”

• **Constraints from EDS**

• **“PKI” in constrained environments**
 • Insufficient bandwidth for standard revocation/path discovery/etc
 • Lack of time synchronization
 • Latency requirements
Lively discussion: EDS crypto issues....

• **Does it get much beyond “one hub-and-spoke”?**
 • (if so, does the EDS PKI need to handle it?)
 • One thing talking with things from more than one administrative domain
 • Many-to-many?
 • Do want the machines to be able to do what the human operators did over the phone in 2003?
 • IIoT?

• **Legacy EDS**
 • long-life energy machines (and networks)
 • ...vs. shorter-life crypto. (and vendors?)
 • separate planes
 • bump-in-the-wire?
 • design with headspace?

• **Legacy PKI**
 • can the EDS PKI truly be independent?
 • rethink legacy “best practices” for EDS
 • rethink C-I-A tradeoffs
Lively discussion: EDS “PKI” requirements

- **Who talks to whom?**
 - including rare but predictable scenarios
- **Threat model**
- **Is authorization non-trivial?**
 - If so, do the keys and certs need to carry the information?
- **Is the important stuff always behind a protected physical perimeter?**
 - Do communications from end points need to be protected?
 - Do we care about smart homes...or smart buildings?
 - What about electric cars?
 - mobile
 - potential for big consequences
 - Distributed energy resources?

- **Do we always want to roll trucks? Or do we want decentralized/remote...**
 - commission
 - software update
 - transfer of ownership
- **Economic reluctance to change IT components. (Certification costs?)**
- **Can we make relying parties smarter to reduce risk of bad messages?**
 - detect bad data from monitors
 - relays that won’t listen to crazy parameter setting commands
 - exploit physical properties----e.g., gas compresses
Towards an Industrial Key Infrastructure

• **TCIP circa 2005:** “Will you ever use the Internet?”
• **Usage scenarios**
• **Interested parties and partners: please get in touch!**

Sean Smith, sws@cs.dartmouth.edu
Discussion
Funded by the U.S. Department of Energy and the U.S. Department of Homeland Security